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1. Introduction
Dinuclear complexes of transition-metal ions are

important molecular models for magnetic materials.
They have been studied extensively both from an
experimental and a theoretical point of view. A broad
survey of the literature is presented in the mono-
graph by Kahn.1 Several reviews2-5 and feature
articles highlight the potential use of molecular
magnets as magnetic materials, and comprehensive
model treatments of exchange coupling through the
first transition series continue to appear.6-10 From a
theoretical point of view, the Heisenberg-Dirac-Van
Vleck Hamiltonian occasionally combined with simple
molecular orbital calculations has certainly domi-
nated the field, ever since the seminal 1959 paper
by Anderson11,12 on the theory of superexchange
interactions. Only quite recently has this situation
started to change when detailed ab initio methods
were developed which make the direct calculation of
exchange levels possible. Progress is dependent on
the complementarity of the two approaches. The
model treatment without reliable quantitative cal-
culations is empty since it provides a formal frame-
work of parametric energy expressions which cannot
be used unless the parameters are known. On the
other hand, the ab initio calculations without the

model are blind since they lack concepts which bring
order and insight in the manifold of calculated levels.
The harmonious combination of both approaches has
now been realized for a number of highly symmetric
dimers of (t2g)n transition-metal ions, and this will
form the main message which this review tries to
transmit.

2. The Spin Hamiltonian
The preferential vehicle of magnetochemists and

magnetophysicists for the study of molecular mag-
netism is the spin Hamiltonian formalism. This
formalism is based on an effective spin-spin coupling
operator which incorporates the interactions between
the magnetic sites. Especially when combined with
additional Zeeman terms, it constituessin the words
of Griffiths“a convenient resting place” in the physi-
cal landscape between experiment and theory.13 One
may admire its invaluable synthetic power to reduce
a large set of experimental data to only a few
empirical coupling constants but should also note a
possible drawback: it may indeed convey the false
impression that the coupling between sites is of
magnetic origin, while it is actually due to the usual
kinetic and potential energy terms of the underlying
molecular Schrödinger equation. Spin Hamiltonians
thus always call for a microscopic theory of weak
exchange interactions. As we will show, such theories
are currently being implemented for dimer com-
plexes. For larger spin clusters though the call
remains largely unanswered.14

For a good understanding of the theoretical basis
of spin Hamiltonians, here we will follow the opposite
path and reconstruct the famous Anderson model of
exchange coupling starting from a simple microscopic
theory of two interacting sites with one magnetic
orbital on each. In spite of its simplicity, the model
will render considerable services when constructing
Hamiltonians in more complicated cases, discussed
in the following sections. Let A and B be the sites
and φA and φB the respective orbitals. These orbitals
will be assumed to be of Wannier type, which means
that they are localized as much as possible while
keeping orthonormality.15 Orbital transformations
will be expressed by creation and annihilation opera-
tors,16 such as aR

†, which creates an electron with R
spin in |φA〉 or bâ, which destroys an electron with â
spin in |φB〉. The number operator nR

A ) aR
†aR counts

the number of electrons with R spin (1 or 0) in |φA〉,* Corresponding author.
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etc. The Hamiltonian for this system contains both
intrasite and intersite terms:

The parameter U represents the Coulombic repul-
sion between two electrons on the same site, while
U′ is the repulsion between electrons on different
sites. B is a genuine exchange parameter correspond-
ing to the matrix element 〈φA(1)φB(2)|1/r12|φA(2)φB(1)〉.
The term V symbolizes the transfer term which
originates from the interaction between the equisym-
metric orbitals on the two sites. The corresponding
parameter t represents the one-electron matrix ele-
ment between the two orbitals. Occupation of the two
orbitals by two electrons yields three singlet states

and one triplet state. A basis which diagonalizes H0

) H0
A + H0

B + H0
AB corresponds to the eigenstates

|Φk
0〉 with energies Ek(k ) 1 - 4) listed in Table 1

|Φ1
0〉 and |Φ2

0〉 are so-called ‘covalent’ states with one
electron on each site, while the remaining |Φ3

0〉 and
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σ,σ′
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A nσ′
B + ∑
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V ) t ∑
σ
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|Φ4
0〉 are of the ‘ionic’ type with double occupation on

one site. The transfer term connects |Φ1
0〉 to the ionic

states. A dinuclear complex is of the exchange or
Heisenberg17 type, as opposed to the bond or Hückel
type, if the transfer integral t is much smaller than
the repulsion between two electrons on the same
center. In this case the covalent states will determine
the ground state and low-lying excited states of the
system. For these states the transfer term acts as a
perturbation which can be incorporated into an
effective Hamiltonian by means of a unitary trans-
formation. One defines an operator S in the space of
H0 eigenstates

where Vkl is the matrix element 〈Φk
0|V|Φl

0〉. The
unitary transformation of H by S is given by ref 18

with

Upon substitution this result simplifies to

When working out the expression for the commuta-
tor, we may neglect the small exchange contribution
of B in the denominators. The transfer term in H̃
then becomes

This effective Hamiltonian splits the covalent states
as

The electrostatic exchange parameter B, which is
bound to be positive since it represents a self-
repulsion of a charge cloud, will favor the triplet
state, while the transfer term will invariably stabilize
the singlet state through second-order interaction
with the high-lying ionic states which are also
singlets. The microscopic treatment thus leads to a
simple prediction that the spin ordering of the ground
state is determined by the interplay of exchange and
transfer interactions. The exchange interactions pro-
mote a ferromagnetic ordering, while the transfer
contributions lead to antiferromagnetic ordering. In
the Anderson terminology, the exchange part is
referred to as the potential energy part since it
derives from the Coulomb operator while the transfer
interaction is the kinetic part since it is due to the
hopping of an electron from one site to the other. We
now introduce local spin operators SA and SB. These
act selectively on spin orbitals which are localized on
the corresponding site. Their components (in units
of p) can easily be expressed as follows

and similarly for SB. Note that the total spin operator
corresponds to the sum S ) SA + SB. One further
has

Using this expression, the effective Hamiltonian in
eq 5 can be converted into a constant term and a
spin-spin coupling term. The associated coupling
parameter in the Heisenberg-Dirac-Van Vleck ter-
minology is denoted as -2J

with

where nA ) nR
A + nâ

A and similarly for nB. The spin-
spin coupling term can easily be evaluated from

and equals -3/2 for the singlet and +1/2 for the
triplet. The gap between triplet and singlet thus
amounts to -2J. A negative J parameter corresponds
to a singlet ground state and thus is characteristic
of antiferromagnetic coupling.

This explicit derivation of the spin Hamiltonian
paradigm illustrates several important points. First
of all it is immediately clear that the spin operators
do not play any physical role. They only appear
because they are practical tools to discriminate the
two spin states concerned. One could equally well use

Table 1. Eigenstates of the Zeroth-Order Hamiltonian

S ) ∑
k,l

Vkl

Ek - El

|Φk
0〉 〈Φl

0| (2)

H̃ ) eS He-S )

(1 + S + 1
2

S2 + ...) (H0 + V) (1 - S + 1
2

S2 - ...)
) H0 + V + [S, H0] + [S, V] +

1
2

[S, [S, H0]] + ... (3)

[S, V] )

∑
k,n {∑

l ( 1

Ek - El

+
1

En - El
) VklVln}|Φk

0〉 〈Φn
0| (4)

H̃ ) H0 + 1
2

[S, V] + ... (5)

1

2
[S, V] ) -

2t2

U - U′
∑

σ
(nσ

A n-σ
B - aσ

† b-σ
† bσa-σ) (6)

Triplet |Φ2
0〉: U′ - B

Singlet |Φ1
0〉: U′ + B - 4t2

U - U′ (7)

2SA
z ) nR

A - nâ
A

2SA
x ) aR

†aâ + aâ
†aR

2SA
y ) - iaR

†aâ + iaâ
†aR (8)

2SA‚SB ) ∑
σ

(12 nσ
A nσ

B -
1

2
nσ

A n-σ
B + aσ

†a-σb-σ
† bσ) (9)

H̃ ) (U′ - B
2

- t2

U - U′)nAnB - 2 J SA‚SB

J ) B - 2t2

U - U′ (10)

2SA‚SB ) S2 - SA
2 - SB

2
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a symmetry element in orbital space which inter-
changes sites A and B, say σ̂|φA〉 ) |φB〉. In the context
of the covalent states, σ̂ may be written as

The equivalence between σ̂ and SA‚SB reads

The singlet |Φ1
0〉 and triplet |Φ2

0〉 functions are, re-
spectively, symmetric and antisymmetric with re-
spect to this spatial symmetry element and thus can
equally well be discriminated by orbital symmetry.
Alternatively, one could also replace the spin opera-
tors by the exchange operator PAB which switches the
local spins. The Dirac identity19 expresses this opera-
tor as

From these expressions, the product of both operators
is found to be equal to minus the identity operator

This close link between orbital and spin exchange is
nothing other than the Pauli exclusion principle:
exchanging both spins and orbitals corresponds to
permuting electrons and will change the sign of the
wave function. In problems with many orbitals per
site, such as transition-metal centers with five active
d orbitals on each metal, this connection between spin
and orbital exchange is not so tight and generaliza-
tions of the spin Hamiltonian formalism are thus far
from obvious. Nonetheless, in the literature, one did
not hesitate to apply the spin-spin coupling formal-
ism in these cases as well. As an early example, in
the discussion of the optical spectra of manganese
pairs, Ferguson et al.20 introduced a Hamiltonian of
the type

where i and j run over all magnetic orbitals. Kahn21

issued a warning that this Hamiltonian is not invari-
ant under unitary transformations of the orbital basis
and should not be used. The proper alternative is to
develop a microscopic theory for the case of multi-
orbital sites. This approach has now been carried out
for a number of highly symmetric bioctahedral com-
plexes of (t2g)n metal ions, as will be reviewed in the
next sections.

A final caveat concerns the confrontation of the
Anderson parametrization scheme with ab initio
results. An approach which was popular during the
early days of semiempirical methods and continues
to be used in the DFT-type calculations is the

so-called frozen orbital approach. It tries to determine
an optimal set of orbitals from which all relevant
states may be calculated. From this set the one-
electron and two-electron parameters which appear
in the model Hamiltonian may be determined by
direct calculation. At the correlated level of calcula-
tion, this frozen orbital approach breaks down.
Indeed, the correlated wave function may be a
convolution of millions of determinants from which
the kinetic and potential parts, which contribute to
the ferromagnetic gap, can no longer be separated.
The decomposition of J in Coulomb and transfer
contributions remains useful though when comparing
exchange splittings in a series of analogous com-
pounds with varying intercenter distance.

For degenerate systems, a single-molecule calcula-
tion yields much more information because of the
large numbers of eigenstates. Several parameters can
then be extracted by inverting the parametric ex-
pressions for the calculated eigenvalues. In ideal
high-symmetry cases, this confrontation may lead to
a single consistent coupling scheme of the entire
exchange manifold. The challenges for the theoretical
description thus mainly concern the study of ex-
change interactions for magnetic ions with un-
quenched orbital moments. The cases we will con-
sider are the ideal ones with tetragonal and trigonal
symmetry.

3. Exchange Interactions between Orbitally
Degenerate Ions: Tetragonal Symmetry

In this section we examine the exchange interac-
tions in orbitally degenerate transition-metal ions in
a linear oxo-bridged geometry. There are a number
of specific features of this vertex-shared bioctahedral
geometry which simplify the theoretical expres-
sions: (i) a high idealized tetragonal symmetry, D4h
or D4d, which yields a highly specific state labeling,
(ii) long MsM distances which imply that the two-
electron interaction integrals between the centers are
very small, (iii) strong axial crystal fields which
separate the dimer states into relatively isolated
configurational manifolds.

In recent years Weihe and Güdel published a
number of interesting studies of the linear and bent
oxo-bridged dimers8,22-24 which were based on a
consistent extension of the Anderson model. Recently
Tsukerblat et al.9 presented a much more formal
account of this approach making use of tensor
algebra.

Here we will present a simplified version of the d1-
d1 case which is entirely taken from the first draft of
ref 8 but in the final paper was replaced by the more
complicated d2-d2 system.

The d1-d1 case is exemplified in complexes with a
Ti(III)-O-Ti(III) core. The D4h geometry is shown
in Figure 1. The parametrization scheme includes
ligand-field and transfer interactions: the transfer
for the dxy

A -dxy
B pair is denoted as δ, while dxz

A -dxz
B

and dyz
A -dyz

B interactions are parametrized as -π. ∆t
measures the tetragonal splitting of the t2g shell
as ∆t ) E(dxz,dyz) - E(dxy). The covalent states of

σ̂ ) ∑
σσ′

bσ
† aσ′

† bσ′ aσ (11)

σ̂ ) -2SA‚SB - 1
2

nAnB (12)

PAB ) 2SA‚SB + 1
2

nAnB (13)

PABσ̂ ) -1 (14)

H̃ex ) -2 ∑
ij

JAiBj
SAi

‚SBj
(15)
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t2g
1-t2g

1 are separated by the tetragonal field in three
manifolds with D4h labels as follows:

The ionic or charge-transfer states of t2g
2-t2g

0 derive
from t2g

2 octahedral parent states 3T1g, 1Eg, 1T2g, and
1A1g. The dimer states originating from these parents
and split by the tetragonal field are presented in the
following scheme:

In these expressions the ionic terms are spread out
over six levels with energies Ui(i ) 1, 6) depending
on Racah’s interelectronic repulsion parameters B
and C and the crystal-field splitting of the t2g shell,
∆t. The parameter U positions the lowest charge-
transfer state 3T1g with respect to the d1-d1 config-
uration.

In Table 2 we reproduce the results of an Anderson-
type parametrization from the work of Güdel and
Weihe. Interestingly, for this geometry large-scale

multireference calculations were performed by Fink
et al.25 In this study the bulky nonbridging ligands
were replaced by He-like model ligands with charges
that reproduce the spectroscopic strength of these
complexes. The results are included in the table. The
Ui parameters appear in the denominators of the
kinetic terms, but no attempt was made to correct
these further for the crystal-field splitting of the
covalent states. When interpreting the results, it will
be assumed that δ exchange between the dxy orbitals
is negligible in view of the absence of d-type valence
orbitals on the bridging ligand. The exchange split-
ting is thus uniquely due to π exchange. Perhaps the
most surprising feature of the resulting expression
is that the charge-transfer pathways which control
the kinetic part are almost uniquely defined by
symmetry. Indeed, for all covalent states there is only
one or no charge-transfer state of the same sym-
metry. The only exception occurs for the 1A1g states
which are connected both to the 1Eg and 1A1g octa-
hedral parents. In this way a transparent set of
expressions is obtained, which clearly shows how the
relative ordering in a given manifold is entirely
determined by the strengths of the Ui parameters in
the denominators. As Weihe and Güdel emphasize,
it is gratifying to see how well these qualitative
trends are obeyed by the ab initio results.

In principle, these results should also form an
important test case for the tensor formalism of ref 9.
It must be noted though that the symmetry labels
in ref 9 show systematic errors; the states originating
from the dxy-dxy configuration are wrongly labeled
as 1A1g and 3A1g instead of 1A1g and 3A2u, etc.... A
detailed comparison is further prevented by quite
different views on the role of ligand-field interactions
in the two treatments: the results in Table 2 are to
the first order determined by the large tetragonal
splitting of the t2g shell, but this effect is not
considered in the tensor treatment of ref 9. In
contrast, the latter formalism explicitly considers the
less important onsite configuration interaction be-
tween (t2g)2 and (t2g)1(eg)1 terms in the ionic manifold.
These different coupling conditions may affect the
composition of the eigenvectors for states which are
not uniquely defined by symmetry labels. This may
limit the applicability of the tensor model.

Figure 1. Cartesian frame for the vertex-shared biocta-
hedral Ti dimer.

dxy
1 - dxy

1 : 3A2u, 1A1g

dxy
1 - (dxz, dyz)

1: 3Eu, 3Eg,
1Eg,

1Eu

(dxz, dyz)
1 - (dxz, dyz)

1:
3A2u, 3A2g,

3B1u, 3B2u, 1A1g,
1A1u, 1B1g,

1B2g (16)

Table 2. Exchange Manifold for d1 Ions in Tetragonal
Symmetry

term
ab

initioa 25
first
order second order8

(b2)1(b2)1 1A1g 0 0 -4/3 δ2/U6 - 8/3 δ2/U3
3A2u 0 0 0

(b2)1(e)1 3Eg 5194 ∆t -(π + δ)2/U1
3Eu 5195 ∆t -(-π + δ)2/U1
1Eg 5238 ∆t -(-π + δ)2/U4
1Eu 5272 ∆t -(π + δ)2/U4

(e)1(e)1 3A2g 9940 2∆t -4π2/U2
1B2g 10279 2∆t -4π2/U5
1B1g 10287 2∆t -4π2/U5
1A1g 10580 2∆t -8/3π2/U6 - 4/3π2/U3
1A1u 11284 2∆t 0
3B1u 11345 2∆t 0
3B2u 11348 2∆t 0
3A2u 11409 2∆t 0

a In cm-1.
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In the discussion of exchange Hamiltonians, the
present Anderson approach is often compared to the
natural magnetic orbital (NMO) approach, which was
proposed by several authors including Kahn.1,26,27 In
the latter approach, the basis orbitals are so-called
natural orbitals that are completely localized on a
given site, say |f A〉 and |f B〉. These orbitals are
nonorthogonal, as opposed to the Wannier functions,
|φA〉 and |φB〉, underlying the Anderson approach. Let
SAB be their overlap integral

A standard transformation relates the two sets of
orbitals:

It is evident that energy calculations do not depend
on transformations of the orbital basis and thus will
yield exactly the same result, irrespective of the kind
of basis orbitals that are used. Hence, it is not
possible to have a conflicting interpretation due to a
different choice of orbital basis.

A possible source of confusion is related to the
definition of the NMO’s. There is indeed no rigorous
way to define the exact meaning of the term “local-
ized”.1 If one is looking for a truly natural orbital
basis, one could equally well take this concept to its
limit and construct natural orbitals in such a way
that the configuration interaction is completely
quenched.26 The antiferromagnetic ground state then
corresponds to a pure Heitler-London-type exchange
pair

The same function in a Wannier basis reads

The canonical set of natural magnetic orbitals which
fulfills this requirement is given by

with

In this basis the kinetic part of the exchange is
entirely incorporated in the diagonal matrix ele-

ments. The price to pay is that one can no longer use
a simple set of natural orbitals of this type to cover
all the spectral states of a given manifold. This may
be rather inconvenient and provides an important
disadvantage of the NMO approach versus the Wan-
nier-type approach.

4. Exchange Interactions between Orbitally
Degenerate Ions: The d1−d1 Case in Trigonal
Symmetry

4.1. The Exchange Hamiltonian from First
Principles

As compared to the vertex-shared dimers, the face-
shared binuclear complexes of transition metals with
unquenched orbital moments present several new
challenges: (i) short metal-metal distances which
imply that the intercenter Coulomb terms cannot be
neglected, (ii) concomitant through-bond and through-
space transfer pathways for the t2g orbitals, (iii) a
small trigonal field which may be comparable to the
exchange splitting. The prime paradigmatic case
which has received much attention is the face-shared
bioctahedral Ti2X9

3- (X ) Cl, Br) complex with trigo-
nal symmetry.28-30 This is a degenerate t2g

1-t2g
1

problem which lacks the extra complication of onsite
Coulombic repulsion in the covalent states. A full
microscopic theory of this problem has recently been
developed.31 We will use these results as a framework
to review the existing model treatments.

The symmetry of the dimer is D3h. Trigonal forms
of the t2g orbitals on each center are described as
follows:

The d-orbital functions in this expression refer to
the local Cartesian (xA, yA, zA) and (xB, yB, zB) frames
shown in Figure 2.

The labels a, θ, and ε refer to the standard trigonal
symmetry conventions.32,33 Relative phases of the
orbitals have been chosen in such a way that the
horizontal symmetry plane, σ̂h, precisely interchanges
corresponding orbitals on sites A and B.

〈f A|f B〉) SAB (17)

|φA〉 ) 1
2 ( 1

x1 + SAB

+ 1

x1 - SAB
) |f A〉 +

1
2 ( 1

x1 + SAB

- 1

x1 - SAB
) |f B〉

|φB〉 ) 1
2 ( 1

x1 + SAB

- 1

x1 - SAB
) |f A〉 +

1
2 ( 1

x1 + SAB

+ 1

x1 - SAB
) |f B〉 (18)

Ψ ) 1

x2(1 + SAB
2 )

(|f R
A f â

B| - |f â
A f R

B|) (19)

Ψ ) a
2

(|φR
A

φâ
B| - |φâ

A
φR

B|) + b
2

(|φR
A

φâ
A| + |φR

B
φâ

B|)
(20)

|f A〉 ) cos æ|φA〉 + sin æ|φB〉

|f B〉 ) cos æ|φB〉 + sin æ|φA〉

2æ ) arcsin b/a (21)

|aA〉 ) dz2
A

|θA〉 ) 1
x3

(dxz
A + x2dx2-y2

A )

|εA〉 ) 1
x3

(dyz
A - x2dxy

A )

|aB〉 ) dz2
B

|θB〉 ) 1
x3

(-dxz
B + x2dx2-y2

B )

|εB〉 ) 1
x3

(-dyz
B - x2dxy

B ) (22)

σ̂h|aA〉 ) |aB〉

σ̂h|θA〉 ) |θB〉

σ̂h|εA〉 ) |εB〉 (23)
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This element thus permutes orbitals at different
sites. In Figure 3 we present contour plots of sym-
metric and antisymmetric molecular orbital contribu-

tions with dominant t2g character. The real trigonal
forms of the t2g orbitals were described in detail in a
study of the emitting doublet states in trigonal Cr-
(III) complexes.32 As compared to the nondegenerate
case, the creation and annihilation operators now
receive an additional orbital label, i ) a, θ, ε.
Generalization of eq 1 for t2g orbitals yields

The Coulomb repulsion depends on whether the two
electrons are in the same t2g orbital (U|) or in different
t2g orbitals (U⊥). J is the exchange integral, and ∆
measures the trigonal splitting of the t2g shell. In a
d-only formalism, the repulsion integrals obey the
pseudospherical relationship

The intercenter two-electron interactions are de-
scribed by

The explicit form of this Hamiltonian taking into
account trigonal symmetry relations is given in
Appendix 1. In the denominators of the subsequent
unitary transformation, the B parameters are ne-
glected and the Uijkl parameters are reduced to a
single isotropic repulsion parameter U′. The transfer
term connects equisymmetric orbitals on the two
centers and discriminates between a- and e-type
exchange

From here on the construction of the effective Hamil-
tonian runs precisely as indicated in section II.
Resulting parametric energy expressions for the pair
states of the t2g

1-t2g
1 configuration are listed in Table

3. In Figure 4 we represent a schematic energy level
diagram to facilitate the further discussion.

The energy expressions provide a powerful analyti-
cal tool to rationalize experiment, ab initio calcula-
tions, and model treatments. We will summarize here
the main results. The configurational averages of the

Figure 2. Cartesian frame for the face-shared bioctahe-
dral Ti dimer.

Figure 3. Contour plots of symmetric (left) and antisym-
metric (right) molecular orbital combinations of the a and
e basis orbitals. Note the π-antibonding Ti-Cl interactions
in the e combinations. This feature indicates that the
transfer between the e orbitals is accomplished via a
superexchange pathway involving the bridging ligands. In
contrast, transfer between the a orbitals is of the direct
through-space type.

H0
A ) U| ∑

i
niR

A niâ
A + U⊥ ∑

i<j
∑
σσ′

niσ
A nA

jσ′ -

1

2
J ∑

i*j
∑

σ
(niσ

A njσ
A - aiσ

† ajσ ai-σ
† aj-σ -

aiσ
† ajσ aj-σ

† ai-σ) + ∆ ∑
σ

(nεσ
A + nθσ

A ) (24)

U| - U⊥ ) 2J (25)

H0
AB )

1

2
∑
σσ′

∑
ijkl

(Uijkl(aiσ
† bjσ′

† blσ′ akσ +

biσ
† ajσ′

† alσ′ bkσ) + Bijkl(aiσ
† bjσ′

† alσ′ bkσ +

biσ
† ajσ′

† blσ′ akσ)) (26)

V ) ta ∑
σ

(aaσ
† baσ + baσ

† aaσ)

te ∑
σ

(aθσ
† bθσ + aεσ

† bεσ + bθσ
† aθσ + bεσ

† aεσ) (27)
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crystal-field configurations (a × a), (a × e), and (e ×
e) are given by

Leaving aside the Uijkl parameters, the effective a f

e promotion energy is thus equal to ∆ - (te
2 - ta

2)/(U|

- U′). The anisotropy of the transfer term will thus
contribute to the trigonal splitting. The diamagne-
tism of the Ti2Cl9

3- ground state29,34 strongly sug-
gests that the (a × a) configuration is lowest, which
implies a positive effective crystal-field splitting.
Precise estimates of the splitting are difficult since
correlation effects seem to play a dominant role. The
antiferromagnetic gap of the ground configuration is
on the order of 735 cm-1. This is in good agreement
with the temperature dependence of the magnetic
susceptibility.35 The gap is clearly due to a strong
exchange interaction between the dz2 obitals. The
transfer term 4ta

2/(U| - U′) is probably on the order
of 700-800 cm-1.

In the excited (a × e) manifold at all levels of
calculation, the states that are antisymmetric with
respect to the site-permuting symmetry plane are
lowest in energy. The separation between the aver-
ages of the symmetric (1E′ and 3E′) and antisymmet-
ric (1E′′ and 3E′′) states is given by

This clearly resembles the Anderson result of eq 10,
but in contrast to the nondegenerate case, the present
gap law does not separate spin states but orbital

Table 3. Parametric Energy Expressions for the (t2g)1-(t2g)1 Configuration and CASPT2 Results in cm-1 31

E(a × a) ) -
2ta

2

U| - U′ + Uaaaa

E(a × e) ) ∆ -
ta
2 + te

2

U| - U′ + Uaθaθ (28)

E(e × e) ) 2∆ -
2te

2

U| - U′ + Uθθθθ - Uθθεε

1
2

(1E′ + 3E′) - 1
2

(1E′′ + 3E′′) )

-2tate ( 1
U| - 3J - U′ + 1

U| - J - U′) + 2Baθaθ

(29)

Figure 4. Schematic energy level diagram for the t2g
1-

t2g
1 system in D3h symmetry. (Reproduced with permission

from ref 35. Copyright 1999 Taylor and Francis, London.)
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symmetries. An exchange Hamiltonian based on the
site-permutation operator is thus nearer to the
exchange coupling phenomena than a spin-spin
coupling Hamiltonian. To a first approximation with
complete neglect of J and Baθaθ, the kinetic exchange
coupling in the excited state, 4tate/(U| - U′), equals
-100 cm-1. This implies a ratio of the transfer
parameters as ta/te ≈ -7. This is an important result
of the ab initio calculations. The orbital plots in
Figure 2 clearly show that the exchange interaction
between dz2 orbitals is of the direct ‘through space’
type.36 In contrast, the exchange between the e
orbitals is of the superexchange ‘through ligand’37,38

type.
In the (e × e) manifold splittings are rather small.

A consistent parametrization is possible under the
assumption that only the U and B parameters are
important. This yields Uθθεε ≈ 10 cm-1 and both Bθθθθ
and Bθθεε on the order of 5 cm-1. In summary, there
is a clear hierarchical order of interactions, which we
may schematically represent as follows:

The calculated exchange spectrum has recently
been compared to experimental susceptibility curves.35

To this aim, spin-orbit and Zeeman interactions
were introduced into the Hamiltonian. The results
are reproduced in Figure 5. Note that the only
adjustable parameters in this plot are the spin-orbit
constant, ú, and the orbital reduction factor, k.

Experimentally, three important pieces of informa-
tion may be extracted from the data: (i) the temper-
ature-independent anisotropy, (ii) the onset of the
magnetization, and (iii) the curvature of the suscep-
tibility rise. These relate to the nature of the elec-
tronic ground state in zero field, the energy gap to
the first excited states, and the magnetic character
of the states which are populated at higher temper-
ature, respectively. Comparison between theory and
experiment is very satisfactory in view of the fact that
the ab initio results do not contain adjustable orbital
parameters. The comparison can be easily made

perfect by introducing a slight energy shift of the (a
× e) states to higher energy and introduction of a
small diamagnetic correction. On the other hand, it
must be kept in mind that susceptibility curves do
not yield the kind of detailed information that can
be obtained by direct spectroscopy.

Very recently, Borrás-Almenar et al.10 proposed an
alternative explanation of the magnetic anisotropy
in Ti2Cl9

3-. We include a brief discussion of this
proposal in the subsequent section.

4.2. Comparison to Extended Spin Hamiltonians
In the past decades several models have been

devoted to the Ti2X9
3- problem. The widespread use

of the spin Hamiltonian has inspired many authors
to introduce additional angular momentum operators
to cope with orbital degeneracy.28-30,39 With the
exception of the work by Tsukerblat et al.,9 these
studies did not make use of the powerful vector
coupling techniques that were developed in atomic
physics and could now render excellent services for
the construction of molecular pair states. Instead,
trial and error methods were preferred. These require
a critical review.

The t2g degeneracy is particularly favorable for a
spherical analysis because of the p-t isomorphism,
which makes it possible to describe the t2g compo-
nents by a fictitious L ) 1 angular momentum.40 The
t2g

1-t2g
1 problem does reduce in a spherical limit to

a 2P × 2P atomic coupling model. Borrás-Almenar et
al.10 very recently pointed out that there are not one
but two spherical limits with dramatically different
magnetic behaviors. Both limits can be represented
in the scheme of the model Hamiltonian. We must
first examine the p-t isomorphism on a two-center
system in more detail. It can easily be verified that
the matrix representation of a local angular momen-
tum operator LA in the t2g

A basis is identical to the
action of the angular momentum operator in a basis
of p orbitals, provided the following identifications
are made

A similar mapping holds for the local LB operator
acting on the states of the t2g

B orbitals but with a
sign change for the z component

This sign change is a consequence of the fact that
the orbital bases on the two centers were constructed
as mirror images. The isomorphism implies that we
can construct t2g

1-t2g
1 states by taking the coupled

states of two inequivalent p electrons and then
performing the appropriate substitutions as pre-

Figure 5. Calculated (full lines, ú ) 154 cm-1, k ) 0.75)
and experimental29 susceptibility curves for Ti2Cl9

3-, cor-
rected for atomic diamagnetism. (Reproduced with permis-
sion from ref 35. Copyright 1999 Taylor and Francis,
London.)

∆ -
(te

2 - ta
2)

U| - U′ J
4ta

2

U| - U′ .
-4tate

U| - U′ . Uiiii > Biijj

(30)
|aA〉 ≈ pz

|θA〉 ≈ px

|εA〉 ≈ py (31)

|aB〉 ≈ -pz

|θB〉 ≈ px

|εB〉 ≈ py (32)
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scribed by eqs 31 and 32. Our trigonal Hamiltonian
can be adapted to this special limit by imposing the
following relationships

Note that all parameters which correspond to popu-
lation of the |aB〉 orbital by a single electron are
accompanied by a minus sign as a result of the
identification of |aB〉 with a -pz component. Under
these conditions, the eigenvalues are indeed grouped
together in degenerate levels which formally may be
assigned as the 1S + 3S + 1P + 3P + 1D + 3D results
of the 2P × 2P product, as shown in Table 4.

Of course we could also choose not to make the sign
change, i.e., to identify the second pz component
directly with |aB〉. The parameter relationships that
will accomplish this are given by

This leads to the same spherical levels but with an
altered eigenvector composition, i.e., with |aB〉 re-
placed by -|aB〉. We want to stress that both coupling
schemes are correct spherical limits of the trigonal
system. Borrás-Almenar et al.10 rightly point out that
the Zeeman interactions in both limits will be quite
different since the eigenvectors are not the same. The

limit with ta ) -te leads to isotropic Zeeman interac-
tions, while the coupling limit with ta ) te produces
a highly anisotropic Zeeman effect. It is clear that
the actual parametric regime, which was obtained by
a comparison of the model expressions with ab initio
results, is very far from either spherical symmetry.

The results in Table 4 are full of symmetries of
different kinds. In the ta ) te coupling scheme, the
single prime states, which are symmetric under site
exchange by the σ̂h plane, carry an Anderson-type
interaction with Biiii as the potential part and a
transfer term with varying denominators as the
kinetic part. The total parity of these states, ex-
pressed as (-1)S+L, is even. In contrast, the odd parity
states, with (-1)S+L ) -1, have no kinetic part and
-Biiii as the potential part. The denominators in the
table can be approximated as follows

Under this approximation, the kinetic part can
entirely be absorbed in effective Coulomb parameters

Ũiiii is a global shift parameter which only fixes the
origin of energy. As a result, the general spherical
Hamiltonian for the exchange interaction between
two t2g shells requires only three effective param-
eters: B̃iiii, Ũiijj, B̃iijj. In this form it is equivalent to
the coupling of two inequivalent p electrons in atomic
physics, which is described by three Slater-Condon
parameters. The Wigner-Racah coupling calculus is
best suited to construct an appropriate effective
Hamiltonian, using irreducible tensor operators.41

Since the B̃iiii term only depends on the total parity,
it will be a tensor quantity of zeroth rank. In contrast,
the Ũiijj and B̃iijj parameters depend on L and are
second-rank quantities. This order of interactions is
in general agreement with our estimates of the

Table 4. Parametric Expressions for the t2g1-t2g1 Configuration under Spherical Symmetry Constraintsa

a Levels are characterized as 2S+1L states, together with their trigonal offspring. As explained in the text, there are two possible
spherical limits which only differ by their eigenvector composition, as specified in eqs 33 and 34. We refer to these cases as -ta
) te and ta ) te, respectively.

∆ ) 0

t ) -ta ) te

Uiiii ) Uaaaa ) Uθθθθ

Uiijj ) - Uaaθθ ) Uθθεε

Uijij ) Uaθaθ ) Uθεθε ) Uiiii - 2Uiijj (33)

Biiii ) Baaaa ) Bθθθθ

Biijj ) - Baaθθ ) Baθθa ) Bθθεε ) Bθεεθ

Bijij ) - Baθaθ ) Bθεθε ) Biiii - 2Biijj

∆ ) 0

t ) ta ) te

Uiiii ) Uaaaa ) Uθθθθ

Uiijj ) Uaaθθ ) Uθθεε

Uijij ) Uaθaθ ) Uθεθε ) Uiiii - 2Uiijj (34)

Biiii ) Baaaa ) Bθθθθ

Biijj ) Baaθθ ) Baθθa ) Bθθεε ) Bθεεθ

Bijij ) Baθaθ ) Bθεθε ) Biiii - 2Biijj

1
U - U′ + xJ

) 1
U - U′ - x J

(U - U′)2
(35)

Ũiiii ) Uiiii - 2t2

U - U′

B̃iiii ) Biiii - 2t2

U - U′

Ũiijj ) Uiijj - 2Jt2

(U - U′)2
(36)

B̃iijj ) Biijj - 2Jt2

(U - U′)2
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physical importance of the parameters. This implies
that a correct spherical model may be a valid starting
point for a description of the actual complex, provided
the trigonal splitting is introduced in an appropriate
way.

In the literature one often finds semiempirical
Hamiltonians which were not based on such consid-
erations but involve trial and error combinations of
the invariants SA‚SB and LA‚LB. An elaborate ex-
ample is the study by Drillon and Georges39 which
uses only two effective parameters. When we com-
pare their spectrum with the expressions in Table 4,
correspondence is obtained if one omits Uiiii, Uiijj, and
Biijj and neglects the difference in the denominators
for the 1S and 1D expressions so that these terms
become degenerate. The latter assumption is quite
artificial since a similar difference between the
denominators for the 1D and 3P terms is maintained.
It restricts the intraionic repulsion during charge
transfer to a spin-spin coupling term. This is not an
adequate description of the (t2g)2 repulsion states,
which appear in the denominators of the transfer
terms.

Furthermore, when applying the Hamiltonian to
the trigonal dimer, the French school puts the entire
task of symmetry breaking in the hands of the
crystal-field splitting parameter. In contrast, Leuen-
berger and Güdel,30 who start off from a less sophis-
ticated spherical limit, use ∆ in conjunction with
different hopping parameters for the a and e path-
ways. This choice was based on extended Hückel
calculations and is corroborated by our analysis based
on CASSCF results.

In summary, the development of a full-tensor
Hamiltonian for the exchange between two 2T2g states
requires a spherical parametrization scheme with
zeroth and second-rank quantities as in the case of
the coupling of two inequivalent p electrons. To this
Hamiltonian should be applied trigonal symmetry
breaking at all levels of interaction. All these ingre-
dients are present in the microscopic Hamiltonian
used to construct the expressions in Table 3. These
expressions represent the most detailed model avail-
able for insight into ab initio results31,42 and experi-
mental magnetic29,35 and spectral43 data.

5. Exchange Interactions between Orbitally
Degenerate Ions: The d3−d3 Case in Trigonal
Symmetry

The chromium(III) dimer, Cr2X9
3- (X ) Cl-, Br-)

presents us with a t2g
3-t2g

3 exchange problem, which
highlights the role of multielectronic site configura-
tions. In principle, the Hamiltonian formalism de-
rived for Ti2X9

3- can directly be applied to the Cr2X9
3-

case as well. However, highly untractable expressions
result since there are already 400 covalent states and
the transfer of one electron generates not less than
450 ionic states. We are thus forced to introduce some
carefully chosen approximations, which are aimed at
simplifying the denominators in the perturbation
expansion. The zeroth-order Hamiltonian is thus
divided in a barycenter part, H0, which contains the

average intra- and intersite Coulomb repulsion, and
a remainder, H′0, which contains the multiplet fine
structure. To these is added the usual transfer term,
V

U and U′ are, respectively, the average Coulomb
repulsion between electrons on the same center and
on different centers. The other parameters were
already defined before. One has

The pseudospherical relation for t2g repulsion inte-
grals, 2J ) U| - U⊥, allows us to eliminate the U|

and U⊥ parameters according to

The Hamiltonian which we have just described acts
in a space of 924 states, comprising 400 covalent
states with t2g

3-t2g
3 configuration, 450 monoexcited

states with t2g
4-t2g

2 configuration, 72 biexcited states
of t2g

5-t2g
1 type, and 2 triexcited t2g

6-t2g
0 states. As

before, we now apply a projection operator S which
acts in the space of H0 eigenstates. Since H0 no longer
contains the multiplet fine structure, its eigenvalues,
which appear as denominators in the projection
operator, reduce to simple expressions for the average

H ) H0 + H′0 + V (37)

H0 ) U (∑
i

(niR
A niâ

A + niR
B niâ

B ) +

∑
i<j

∑
σσ′

(niσ
A njσ′

A + niσ
B njσ′

B )) + U′ ∑
i,j

∑
σσ′

niσ
A njσ′

B (38)

H′0 ) H′0 (A) + H′0 (B) + H′0 (AB)

H′0 (A) ) (U| - U) ∑
i

niR
A niâ

A +

(U⊥ - U) ∑
i<j,σσ′

niσ
A njσ′

A -
1

2
J ∑

i*j
∑

σ
(niσ

A njσ
A -

aiσ
† ajσ ai-σ

† aj-σ - aiσ
† ajσ aj-σ

† ai-σ) +

∆ ∑
σ

(nθσ
A + nεσ

A )

H′0 (AB) ) ∑
i,j

∑
σσ′

(Uijij - U′) niσ
A njσ′

B +

∑
i*j

∑
σσ′

Uiijj (aiσ
† ajσ biσ′

† bjσ′ + aiσ
† ajσ bjσ′

† biσ′) -

∑
i

∑
σσ′

Biiii (aiσ
† aiσ′ biσ′

† biσ) -

∑
i*j

∑
σσ′

Biijj aiσ
† ajσ′ biσ′

† bjσ - ∑
i*j

σσ′

Bijji aiσ
† ajσ′ bjσ′

† bjσ -

∑
i*j

∑
σσ′

Bijij (aiσ
† ajσ′ biσ′

† biσ) (39)

U )
U| + 4U⊥

5
(40)

U| - U ) 8
5

J

U⊥ - U ) -2
5

J (41)
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repulsion in a given configuration. For a state |Φk
0〉

belonging to t2g
njA-t2g

njB, one has

The remaining interactions, H′0 and V, are both
treated as perturbations. The effective Hamiltonian
thus becomes

with

When working out the above expressions, we used
the real Hermitian character of the matrices in V and
H′0. When the Hamiltonian acts on the ground
manifold of covalent states, second-order transfer
paths will only reach singly excited t2g

4-t2g
2 configu-

rations at average energies U - U′. Under this
restriction, the effective Hamiltonian reduces to

The energies of the dimer coupled states appear when
the effective Hamiltonian is confronted with the
determinantal symmetry functions for the covalent
manifold. The single-center (t2g)3 wavefunctions44 are
listed in Table 5. The states are characterized by an
orbital and spin label. The orbital component of the
4A2g ground state is denoted as a0. The horizontal
symmetry plane connects the two sites, e.g.

Pair states are obtained by coupling single-center

states with full antisymmetrization over all electrons,
e.g.

Relevant pair states in the low-energy region are the
4A2g-4A2g ground state combinations and the 4A2g-
2E2 and 4A2g-2T1g pairs involving excitations of a
single site. These states are listed in Table 6.

Energy expressions45 for all these states are given
in Tables 7-9. The derivation of these expressions
is a task of considerable complexity, which can only
be carried out with the help of a symbol manipulating
package such as Mathematica. For completeness, we
also list the nonzero off-diagonal matrix elements in
Table 10. Since the manifolds concerned are sepa-
rated by approximately 15 000 cm-1, these matrix
elements are not used in our discussion.

A CASSCF calculation was performed on the lowest
dimer states of Cr2Cl9

3-. The results and details of
the calculation are indicated in Table 11. We will now
summarize the main results from a comparison of
model expressions, ab initio calculations, and spectral
data.

We first consider the 4A2g-4A2g ground state. From
the energy expressions in Table 7, it is obvious that
the spin states which result from the coupling of the
two 4A2g states obey a Landé-type interval rule. This
means that we can describe the exchange interaction
by a Heisenberg Hamiltonian of the type H )
-2JexSA‚SB. The coupling constant Jex has three
ingredients which are defined in the table.

Ja
(1) is the kinetic part which is responsible for the

antiferromagnetic ground state. As compared to the
ground state of Ti2Cl9

3-, the principal ta
2/(U - U′)

contribution in Ja
(1) is reduced by a statistical factor

of 1/9. As a result, the other contributions, the
ferromagnetic term, Jf, and the repulsion-assisted
exchange, Ja

(2), gain importance. Both terms reduce
the antiferromagnetic gap. Jex can be estimated using
the parameter values that were previously31 obtained

Ek ) U [njA (njA - 1)
2

+
njB (njB - 1)

2 ] + U′njAnjB (42)

H̃ ) H0 + H′0 + [S, H′0] + 1
2

[S, V] +

1
2

[S, [S, H′0]] + 1
2

[S, [S, V]] + ... (43)

1

2
[S, V] )

1

2
∑
kn (∑l ( 1

Ek - El

+
1

En - El
) Vkl Vln) |Φk

0〉 〈Φn
0|

[S, H′0] ) ∑
kls

((H′0)lk Vsl

Es - El

+
(H′0)sl Vlk

Ek - El
) |Φs

0〉 〈Φk
0|

[S, [S, H′0]] )

∑
np

∑
kl

Vnp

En - Ep
((H′0)lk Vpl

Ep - El

+
(H0

′ )pl Vlk

Ek - El
) ×

(|Φn
o〉 〈Φk

0| + |Φk
0〉 〈Φn

0|)
[S, [S, V]] )

∑
np

∑
kl

Vnp Vpl Vlk

En - Ep
( 1

Ep - El

+
1

Ek - El
) ×

(|Φn
o〉 〈Φk

0| + |Φk
0〉 〈Φn

0|) (44)

Heff ) H0 + H′0 - 1
U - U′V‚V -

1
2(U - U′)2

[[H′0, V], V] (45)

σ̂h|a0(1/2)A〉 ) |a0(1/2)B〉 (46)

Table 5. Single-Center Wave Functions for the (t2g)3

Configuration44

|7A2
′′〉 ) {a0(3/2)A a0(3/2)B} ) |aA θA

ε
A aB θB

ε
B|
(47)

Jex ) Jf + 2Ja
(1) + 2Ja

(2) (48)
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for Ti2Cl9
3- with a similar metal-metal distance.

This yields a value of -20 cm-1, which is less
antiferromagnetic than could be expected from the
statistical factor alone.

The model thus leads to two important predic-
tions: (i) the splitting between the spin states of the
ground configurations should follow a Landé interval
rule, and (ii) the coupling is antiferromagnetic with
a singlet-triplet gap in Cr2Cl9

3- of approximately 40
cm-1, which is far less than 1/9 of the 800 cm-1 gap
in the comparable t2g

1-t2g
1 Ti(III) system. These

predictions now have to be compared with experi-
mental and ab initio results.

The ab initio results for Cr2Cl9
3- were listed in

Table 11. A broad spectrum of experimental splittings
is collected in Table 12.

These data were obtained from magnetic suscep-
tibility,46 optical,47 high-resolution Zeeman and
MCD,47,48 INS,49 and ESR50,51 measurements. In
addition, a wealth of experimental information is also
available on similar triply bridged complexes

Table 6. Determinant Functions for the Excited States of the (t2g)3-(t2g)3 Configurationa

a For the E-type functions, only the θ component is given.
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such as Cr2Br9
3- 52-54 and tris-µ-hydroxo Cr(III)

complexes with Wieghardt-type ligands.55-60

The derivations of the Landé interval rule can be
expressed by adding higher order terms to the
phenomenological Hamiltonian

In Table 13 we summarize the values for the three
parameters Jex, j, and ∆3 that can be extracted from
experiment.

The experimental data which we have retrieved do
not provide convincing evidence for significant devia-
tions from the Landé rule. In fact, the only experi-
ment which supports such deviation is the ESR study
of (NPr4)3Cr2Cl9.51 The reason for this discrepancy is
unclear. The ab initio calculations on Cr2Cl9

3- also
exhibit a negative deviation from the interval rule.
The size of the calculated singlet-triplet gap at the
CASPT2(c) level is almost in quantitative agreement
with our extrapolated value from Ti2Cl9

3- but clearly
overestimates the true gap. One possible explanation

would be that in spite of the similar metal-metal
distance the hopping integral for through-space dz2-
dz2 overlap in Cr2Cl9

3- is much smaller than in
Ti2Cl9

3-, as suggested by Güdel and Leuenberger on
the basis of extended Hückel calculations.61

Next we turn our attention to the excited states of
4A2g-2Eg and 4A2g-2T1g parentage.

These excited pair states have formed the object
of experimental46-48,52 and theoretical62,63 studies.
One conclusion, on which there seems to be at least
general agreement, is that the exchange interaction
in these excited manifolds is a very complicated
problem, which remains poorly understood. Ligand-
field absorption spectra of Cs3Cr2Cl9 and Cs3Cr2Br9
have been obtained by Dubicki et al.52 For the
bromide complex the spin-paired t2g

3-t2g
3 states are

clearly observable in the optical windows between the
intense spin-allowed t2g f eg bands. For the chloride
complex only the 4A2g-2T1g region could well be
characterized by polarized absorption spectroscopy.48

One of the most interesting model treatments was
presented by Barry et al. in 1981.63 Using little more
than symmetry and spin operators, these authors
arrived at a valuable result regarding the energy
difference between prime and double prime states of
a given spin. The ratio of these differences in the
quintet vs the triplet states was found to adopt the
simple integer value of -3. Hence, as an example,
for the energies of the E-states originating from the
4A2g-2Eg manifold one would have

Table 7. Parametric Energy Expressions for 4A2g-4A2g

state energya

7A′′2 hg - 9Jf
5A′1 hg - 3Jf + 12Ja

(1) + 12Ja
(2)

3A′′2 hg + Jf + 20Ja
(1) + 20Ja

(2)

1A′1 hg + 3Jf + 24Ja
(1) + 24Ja

(2)

a hg ) 6U - (42/5)J + 4∆ + Uaaaa + 2(Uθθθθ + Uθεθε) + 4Uaθaθ.
Jf ) (1/9)(Baaaa + 4Baθθa + 2(Bθθθθ + Bθθεε)) Ja

(1) ) - (1/9(U -
U′))(ta

2 + 2te
2) Ja

(2) ) (1/9(U - U′)2)(ta
2(18/5 J + U′ - Uaaaa) -

4tateUaaθθ + 2te
2(18/5 J + U′ - Uθθθθ - Uθθεε)).

Table 8. Parametric Energy Expressions for 4A2g-2Eg

a hae ) 6U - (27/5)J + 4∆ + Uaaaa + 2(Uθθθθ + Uθεθε) + 4Uaθaθ.

Hex ) -2JexSA‚SB + j(SA‚SB)2 + ∆3(SA‚SB)3 (49)

5E′ - 5E′′
3E′ - 3E′′

) -3 (50)
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This result was based on explicit calculation of a few
two-electron matrix elements.

Quite remarkably the result obtained by Barry et
al.63 also applies to the full energy expressions in
Tables 8 and 9, which are based on a much more
elaborate Hamiltonian and comprise all possible two-
body interactions. Undoubtedly this relationship is
due to the aufbau symmetry of the half-filled shell

states, which also underlies the quasispin selection
rules in the doublet states of monomeric Cr(III)
complexes.64 From this symmetry we can build a two-
parameter spin Hamiltonian, which presents a uni-
fied treatment of the pair states

Table 9. Parametric Energy Expressions for 4A2g-2T1g

a hat ) 6U - (27/5)J + 4∆ + Uaaaa + 2(Uθθθθ + Uθεθε) + 4Uaθaθ.

Table 10. Off-diagonal Exchange Matrix Elements between the 4A2g-4A2g and 4A2g-2T1g Configurations

H ) J1SA‚SB + J2(-1)S S2σ̂h (51)
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where J1 and J2 are two exchange parameters, S2 is
the total spin momentum operator, and σ̂h recognizes
the spatial symmetry of the orbital part. The four
states 3Γ′, 3Γ′′, 5Γ′ ,5Γ′′ of a given manifold (Γ ) E for
4A2g-2Eg, Γ ) A, E for 4A2g-2T1g) are split by this
Hamiltonian as follows

In this parametrization scheme the energy gap
between 5Γ′ and 5Γ′′ equals 12J2, versus -4J2 for the
triplet levels, yielding the required ratio of -3. The

separation between the quintet and triplet bary-
centers amounts to 2J1.

We will now discuss in detail the 4A2g-2Eg states.
From Table 8 we can deduce the expressions for the
J1 and J2 parameters:

For the purpose of a semiqualitative analysis, we
now make the following assumptions: (i) all B
parameters are of the same order of magnitude, we
summarize all these contributions into an effective
B′ parameter; (ii) since ta/te ≈ -7, te

2 can be ne-
glected with respect to tate and tate can be neglected
with respect to ta

2.
The expressions for J1 and J2 within the 4A2g-2Eg

manifold are then written

As can be seen above, J1 should be a small
parameter, because of the different contributions of
opposite sign, and thus, the coupling can be ferro- or
antiferromagnetic. J2 should be larger, because now
the leading terms both make a positive contribution,
and thus, our calculation predicts that the prime
quintet states will be higher in energy than the
double prime quintet states. In Table 14 are the
experimental energies for the 4A2g-2Eg states in
Cr2Br9

3- as obtained by Dubicki et al.52 The ordering
here is ferromagnetic, but the quintet-triplet gap is
very small (∼6 cm-1). The splitting between prime
and double prime states is much larger, 70 cm-1 for

Table 11. Calculated Energy Spectruma of Cr2Cl9
3-

CASSCF CASPT2(v) CASPT2(c)
4A2g

4A2g
1A′1 0 0 0
3A′′2 4 41 44
5A′1 10 104 112
7A′′2 18 150 163

4A2g
2Eg

5E′′ 19166 16700 14600
3E′′ 19182 16703 14599
3E′ 19175 16714 14617
5E′ 19186 16731 14627

4A2g
2T1g

5A′1 19787 17245 15335
3A′′2 19830 17423 15526
5A′′2 19839 17473 15581
3A′1 19847 17494 15604
3E′ 20262 17631 15607
3E′′ 20264 17638 15614
5E′′ 20280 17759 15743
5E′ 20288 17776 15763

a Basis set used 6s4p3d1f on Cr, 4s3p1d on Cl.

Table 12. Experimental Energy Splittings (in cm-1)
for the Ground State of Cr2Cl9

3-

ref 7A′′2 - 5A′1
5A′1 - 3A′′2

3A′′2 - 1A′1
Cr2Cl9

3- 51 23 ( 2.5 27 ( 1.5 11 ( 0.5
47 39 ( 0.5 26 ( 0.5 13 ( 0.5
48 39 ( 4 26 ( 1 12 ( 1
49 14.1

Cr2Br9
3- 52 13 10.5 8.5

54 8.3
Cr2(OH)3(tmtacn)2 57 not measured 267 ( 1.5 138 ( 0.5

58 not measured 211 ( 7 112 ( 2

Table 13. Experimental Values for the Ground-State
Exchange Parameters for the Hamiltonian in eq 49

ref J j ∆3

Cr2Cl9
3- 50 -5.9

46 -6.5 ≈ 0
51 -6.2 -1.75 -0.34
47 -6.2 0 G j G -0.5
48 -6.7 0.25

Cr2Br9
3- 52 -4.2 -0.2

Cr2(OH)3(tmtacn)2 57 -64 -1.6
58 -51 -1.2

E(5Γ′) ) 3/4J1 + 6J2

E(5Γ′′) ) 3/4J1 - 6J2

E(3Γ′) ) -5/4J1 - 2J2 (52)

E(3Γ′′) ) -5/4J1 + 2J2

J1 ) 1
9 [- 2Baaaa - 8Baθθa - 4Bθθθθ - 4Bθεεθ +

1
U - U′ (4ta

2 + 8te
2) + 1

(U - U′)2
×

(ta
2 (-72

5
J - 4U′ + 4Uaaaa) + tate16Uaaθθ +

te
2 (-288

5
J - 8U′ + 8Uθθθθ + 8Uθθεε))] (53)

J2 ) 1
18 [2Baaθθ + 2Baθaθ + Bθθθθ - Bθεεθ +

1
U - U′ (-2te

2 - 4tate) + 1
(U - U′)2

×

(ta
2 (-2Uaaθθ) + tate (12

5
J + 4U′ - 4Uaθaθ) +

te
2 (65 J + 2U′ - 2Uaaθθ - 2Uθθθθ + 2Uθθεε))]

J1 ) 1
9 [ - 18B′ + 1

U - U′ 4ta
2 +

1
(U - U′)2

ta
2 (-72

5
J - 4U′ + 4Uaaaa)]

J2 ) 1
9 [2B′ - 1

U - U′ 2tate - 1
(U - U′)2

ta
2 Uaaθθ]

(54)
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the quintets and 20 cm-1 for the triplets. The
experimental ratio amounts to

which is in good agreement with our calculations. For
the Cr2Cl9

3- complex, we have to rely upon the ab
initio results in Table 11. On all levels of calculation,
the coupling is ferromagnetic and smaller than the
prime-double prime gap. At the CASSCF level, the
ratio (5E′ - 5E′′)/(3E′ - 3E′′) almost exactly equals the
magic -3 ratio, an astonishing result which disap-
pears upon introducing more correlation. Recently,
Schenker et al.65 found evidence for an antiferromag-
netic coupling in the 4A2g-2Eg manifold in tris(µ-
hydroxo)bis(tmtame)chromium trinitrate (tmtame )
N,N′,N′′-trimethyl-1,1,1-tris(aminomethyl)ethane), but
further information regarding the position of the
quintet states could not be deduced. In the Wieghardt
complex, tris(µ-hydroxo)bis(tmtacn)chromium tri-
perchlorate (tmtacn ) 1,4,7-trimethyl-1,4,7-triaza-
cyclononane), Riesen et al.57 also observed an anti-
ferromagnetic coupling, but again, further informa-
tion on the quintets was lacking. Since the kinetic
part of the exchange in these complexes is much
larger, J1 will clearly be large and positive, which
simply explains this observation. In both examples
the 3E′′ and 3E′ states are quite close to each other.
The 3E′′ is placed lowest as opposed to the Cr2X9

3-

complexes.66 Riesen and Güdel point out that the t2g
3

multiplets in the trial complexes are heavily mixed
by the trigonal field, which may explain the different
behavior of the lowest excited states.

Finally, let us consider the 4A2g-2T1g states. The
trigonal field splits the parent 2T1g state into A and
E components. Because of quasispin selection rules,64

this is a second-order process involving ligand-field
interaction between 2T1g and 2T2g. The calculations
for Cr2Cl9

3- place the A states a few hundred cm-1

below the E states, and this is also confirmed
experimentally.48 For this reason the Γ ) A and Γ )
E manifolds can be treated separately as far as the
exchange coupling is concerned. Again, for these
cases the ratio of -3 is confirmed both at the
CASSCF level and for the microscopic energy expres-
sions as provided in Table 9. The experimental
splittings are give in Table 14.

The J1 and J2 parameters are now expressed as
follows. For the A manifold:

And for the E manifold:

In formal octahedral symmetry, the A and E
manifolds are degenerate and split by J1 and J2 in
the same way. To introduce this artificial spherical
symmetry, we impose the same isotropic relations as
we used in eq 34. We then indeed immediately verify
that the expressions for the J1 and J2 parameters
become identical for both 2T1g components

Table 14. Spectroscopic Results for the Ordering of
Pair States in Cr2X9

3-

ref state energy
4A2g-2Eg Cr2Br9

3- 52 5E′′ 13825
3E′ 13856
3E′′ 13876
5E′ 13895

4A2g-2T1g Cr2Br9
3- 48 5A′1 14327

5A′′2 14486
3A′′2 14514
3A′1 14554
3E′ 14586
3E′′ 14600
5E′′ not assigned
5E′ not assigned

5E′ - 5E′′
3E′ - 3E′′

≈ -3.5,

J1 ) 1
9 [2Baaaa - 4Baθθa - 8Bθθθθ - 8Bθεεθ +

1
U - U′ (-4ta

2 + 16te
2) + 1

(U - U′)2
×

(ta
2 (12

5
J + 4U′ - 4Uaaaa) + 8tateUaaθθ +

te
2 (-228

5
J - 16U′ + 16Uθθθθ + 16Uθθεε))]

J2 ) 1
18 [2Baaaa - 4Baθθa + Bθθθθ + Bθεεθ +

1
U - U′ (-4ta

2 - 2te
2) + 1

(U - U′)2
×

(ta
2 (12

5
J + 4U′ - 4Uaaaa) + 8tateUaaθθ +

te
2 (65 J + 2U′ - 2Uθθθθ - 2Uθθεε))] (55)

J1 ) 1
9 [-4Baaaa - 10Baθθa - 2Bθθθθ - 2Bθεεθ +

1
U - U′ (8ta

2 + 4te
2) + 1

(U - U′)2
×

(ta
2 (-114

5
J - 8U′ + 8Uaaaa) + 20tateUaaθθ +

te
2 (-102

5
J - 4U′ + 4Uθθθθ + 4Uθθεε))]

J2 ) 1
18 [Baaθθ + Baθaθ + 2Bθθεε + 2Bθεθε +

1
U - U′ (-4te

2 - 2tate) + 1
(U - U′)2

×

(-ta
2 Uaaθθ + tate (65 J + 2U′ - 2Uaθaθ) +

te
2 (12

5
J + 4U′ - Uaaθθ - 4Uθθεε - 4Uθεθε))] (56)

J1 ) 1
9 [-6Biiii - 12Biijj + 1

U - U′ 12t2 +

t2

(U - U′)2 (-216
5

J - 12U′ + 12Uiiii + 24Uiijj)]
J2 ) 1

18 [3Biiii - 3Biijj - 1
U - U′ 6t2 +

t2

(U - U′)2 (18
5

J + 6U′ - 6Uiiii + 6Uiijj)] (57)

Theoretical Models of Exchange Interactions Chemical Reviews, 2000, Vol. 100, No. 2 803



This is a gratifying check of the complicated energy
expressions in Table 9. For a discussion of the
experimental data and the ab initio calculations for
the Cr2Cl9

3- complex, we return to the expressions
for J1 and J2 in eqs 55 and 56 for the A and E
manifold, respectively.

With the assumptions made above in the discussion
of the 4A2g-2Eg states, the J1 and J2 parameters
become for the A manifold

From the ab initio calculations as well as from
experimental evidence, these two parameters are
negative and of the same order of magnitude, the
difference between averaged single and double prime
triplet states, 4J2, being a bit smaller in absolute
value than the difference between averaged quintet
and triplet states, 2J1. This can be traced back
immediately to the absence of the B′ parameter in
the expression for J2. The ratio of the splittings
(5A′1 - 5A′′2 ) and (3A′1 - 3A′′2 ) of -3 is very well
obeyed at all levels of ab initio calculations; the
experimental ratio is approximately -4. Comparing
experimental and ab initio results further, one no-
tices that the exact ordering is not the same, the
position of the 5A′′2 and 3A′′2 states being inter-
changed.

Within the E block, we retain the following expres-
sions for the two parameters

From the experimental data, the position of the 5E
states is not clear, but in any case they are above
the triplets. This is confirmed at all levels of ab initio
calculations and by our model expressions. These
further predict that the averaged prime states are
above the averaged double prime states, which is
indeed confirmed by the ab initio calculations. The
ratio of -3 is very well reproduced.

We now would like to compare the splitting of the
E states in the 4A2g-2Eg and 4A2g-2T1g manifold,
respectively. Since we only have experimental results
for 4A2g-2Eg in Cr2Br9

3- and for 4A2g-2T1g in Cr2Cl9
3-,

the discussion will be restricted to some qualitative
comments. In the expression for J1, we see im-
mediately that the contribution of ta

2/(U - U′) is
doubled in 4A2g-2T1g with respect to 4A2g-2Eg. Thus,
we can say that in 4A2g-2T1g the splitting between
averaged quintets and triplets should be more im-

portant than in 4A2g-2Eg, which is indeed confirmed
by ab initio calculations and experiment. The expres-
sions for J2 are more difficult to compare since we
only have a rough estimate of the relative impor-
tances of the various contributions, by taking the
values of the parameters as deduced for Ti2Cl9

3-.
The dominant contribution of tate/(U - U′) is now
twice as large in 4A2g-2Eg as compared to 4A2g-2T1g,
which is consistent with the ab initio and experimen-
tal results.

In summary, a model study of exchange interac-
tions in the Cr2Cl9

3- system yields several interest-
ing conclusions. The ground-state energy splittings
are found to obey a Landé splitting pattern. Although
there are claims for a deviation from this interval
rule,51 we find the experimental evidence in favor of
the contrary. Due to orbital degeneracy in the excited
states, an at first sight very complex splitting pattern
is observed. Through thorough inspection of both
parametric energy expressions and ab initio and
experimental evidence, a simple two-parameter Hamil-
tonian could be constructed, which elucidates the
complex electronic structure of the excited manifold.
The underlying symmetry on which this model is
based remains as yet hidden.

6. Further Outlook
The idea that bonding between atomic systems can

arise via exchange has a respectable history in the
study of quantum mechanics. Its application to
interactions between bridged transition-metal centers
was seriously investigated from the 1970s onward,
with the help of a full arsenal of spectroscopic and
magnetic techniques involving magnetic circular
dichroism, site-selective luminescence, inelastic neu-
tron scattering, oriented electron spin resonance, etc.

At about the same time, several theoretical models
were developed, which attempted to extend the
succesful spin Hamiltonian formalism to systems
with unquenched orbital moments. These models
were based on general symmetry considerations and
were often scaled with respect to low-resolution
quantities such as magnetic susceptibility. At the
beginning of the 1990s, attention was attracted to
more complex polymetallic systems,67 which were
promising molecular magnets but obviously could not
be treated with the same detail as the dimeric
systems in view of the multiplicative growth of the
eigenspace with the number of magnetic centers.

Only quite recently an opportunity was offered to
return to a closer study of the simple exchange
systems when ab initio results became available that
for the first time described the exchange manifold
with sufficient accuracy.25,31 In this respect, we are
certainly entering a new era where correlated ab
initio calculations will finally be able to unravel the
fine structure of these manifolds. Specially designed
methods such as the difference-dedicated configura-
tion interaction (DDCI)68 bring experimental ac-
curacy within reach. This evolution in our opinion
has cleared the scene for more mature models of
exchange electronic structure to make a reappear-
ance. This time they can afford to be based on a full
microscopic Hamiltonian which is expanded to in-
clude all two-body interactions. The many param-
eters that such an approach generates can be coped
with by direct comparison to the ab initio results. The
specific role of the models in this case is to bring order

J1 ) 1
9 [-18B′ - 1

U - U′ 4ta
2 + 1

(U - U′)2
ta
2(12

5
J +

4U′ - 4Uaaaa)]
J2 ) 1

9 [- 1
U - U′ 2ta

2 + 1
(U - U′)2

ta
2 ×

(65 J + 2U′ - 2Uaaaa)] (58)

J1 ) 1
9 [-18B′ + 1

U - U′ 8ta
2 + 1

(U - U′)2
ta
2

(-114
5

J - 8U′ + 8Uaaaa)]
J2 ) 1

9 [3B′ - 1
U - U′ tate - 1

2(U - U′)2
ta
2Uaaθθ]

(59)
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and understanding in the rich fine structure of these
spectra. Only through such models can one discover
and hopefully understand effects such as the special
symmetry which arises when two half-filled shells on
metallic neighbors interact.

To some extent, the future of these models is
similar to the fate of detailed theories such as the
Slater-Condon-Shortley theory of atomic spectra or
the ligand-field theory for mononuclear complexes.
Although straightforward ab initio treatments are
gradually taking over, it is important to remember
that in these spectroscopies “the series of experimen-
tally established levels previously classified as com-
ponents of pure dq configurations are still there,
observable as ever”.69
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8. Appendix 1
The intercenter two-electron interactions in a

trigonal symmetry basis are described by

This expression incorporates the following trigonal
symmetry relations

In our original paper, we proposed a simplified
version of this Hamiltonian with Baaθθ ) Baθθa and
Bθθεε ) Bθεεθ. These equalities strictly hold in the
spherical symmetry limit only and have therefore not
been introduced in the present expressions.
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(8) Weihe, H; Güdel, H. U. Chem. Phys. Lett. 1996, 261, 123.
(9) Borrás-Almenar, J. J.; Clemente-Juan, J. M.; Coronado, E.; Palii,

A. V.; Tsukerblat, B. S. J. Phys. Chem. 1998, A102, 200.
(10) Borrás-Almenar, J. J.; Clemente-Juan, J. M.; Coronado, E.; Palii,

A. V.; Tsukerblat, B. S. Manuscript in preparation.
(11) Anderson, P. W. Phys. Rev. 1959, 115, 2.
(12) Anderson, P. W. In Solid State Physics; Seitz, F., Turnbull, D.,

Eds.; Academic Press: New York, 1963; Vol. 14, p 99.
(13) Griffith, J. S. The Theory of Transition-Metal Ions; Cambridge

University Press: Cambridge, 1961; p 361.
(14) Delfs, C. D.; Gatteschi, D.; Pardi, L. Comments Inorg. Chem.

1993, 15, 27.
(15) Slater, J. C. Quantum Theory of Molecules and Solids; McGraw-

Hill: New York, 1974; Vol. IV.
(16) Judd, B. R. Second Quantization and Atomic Spectroscopy; The

John Hopkins Press: Baltimore, 1967.
(17) Heisenberg, W. Z. Phys. 1928, 49, 619.
(18) Davydov, A. S. Quantum Mechanics; Pergamon: Oxford, 1976.
(19) Dirac, P. A. M. The Principles of Quantum Mechanics, 4th ed.;

Oxford University Press: New York, 1958; p 222.
(20) Ferguson, J.; Guggenheim, H. J.; Tanabe, Y. J. Phys. Soc. Jpn.

1966, 21, 692.
(21) Kahn, O. Mol. Phys. 1975, 29, 1039.
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H0
AB ) ∑

σσ′
(Uaaaanaσ

A naσ′
B + Uθθθθ(nθσ

A nθσ′
B + nεσ

A nεσ′
B +

nθσ
A nεσ′

B + nεσ
A nθσ′

B ) + Uaaθθ(aaσ
† aθσbaσ′

† bθσ′ +

aaσ
† aεσbaσ′

† bεσ′ + aθσ
† aaσbθσ′

† baσ′ + aεσ
† aaσbεσ′

† baσ′ +

aaσ
† aθσbθσ′

† baσ′ + aaσ
† aεσbεσ′

† baσ′ + aθσ
† aaσbaσ′

† bθσ′ +

aεσ
† aaσbaσ′

† bεσ′) + Uaθaθ(naσ
A nθσ′

B + naσ
A nεσ′

B + nθσ
A naσ′

B +

nεσ
A naσ′

B ) + Uθθεε(aθσ
† aεσbθσ′

† bεσ′ + aεσ
† aθσbεσ′

† bθσ′ +

aθσ
† aεσbεσ′

† bθσ′ + aεσ
† aθσbθσ′

† bεσ′ - 2nθσ
A nεσ′

B - 2nεσ
A nθσ′

B )) -

Baaaa ∑
σ

(naσ
A naσ

B + aaσ
† aa-σba-σ

† baσ) -

Bθθθθ(∑
σ

(nθσ
A nθσ

B + aθσ
† aθ-σbθ-σ

† bθσ + nεσ
A nεσ

B +

aεσ
† aε-σbε-σ

† bεσ) + ∑
σσ′

(aθσ
† aεσ′bεσ′

† bθσ + aεσ
† aθσ′bθσ′

† bεσ)) -

Baθθa(∑
σ

(naσ
A nθσ

B + aaσ
† aa-σbθ-σ

† bθσ + naσ
A nεσ

B +

aaσ
† aa-σbε-σ

† bεσ + nθσ
A naσ

B + aθσ
† aθ-σba-σ

† baσ + nεσ
A naσ

B +

aεσ
† aε-σba-σ

† baσ) - Baaθθ ∑
σσ′

(aaσ
† aθσ′baσ′

† bθσ +

aaσ
† aεσ′baσ′

† bεσ + aθσ
† aaσ′bθσ′

† baσ + aεσ
† aaσ′bεσ′

† baσ) -

Baθaθ ∑
σσ′

(aaσ
† aθσ′bθσ′

† baσ + aaσ
† aεσ′bεσ′

† baσ +

aθσ
† aaσ′baσ′

† bθσ + aεσ
† aaσ′baσ′

† bεσ) - Bθεεθ(∑
σ

(nθσ
A nεσ

B +

aθσ
† aθ-σbε-σ

† bεσ + nεσ
A nθσ

B + aεσ
† aε-σbθ-σ

† bθσ) -

∑
σσ′

(aθσ
† aεσ′bεσ′

† bθσ + aεσ
† aθσ′bθσ′

† bεσ)) -

Bθθεε ∑
σσ′
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